CEM 882
Lecture Notes 2

Weliny

Thermodynamics / St atistical Mechaxis are the same field. Jhermodynonicis was developed in the $19^{\text {th }}$ century before a clear understanding of atoms and molecules and was an effort to understand how energy could be interchanged between heat (temperature changes) and mechanical motion in engines and machines \Rightarrow coupled with the industrial revolution in Western Europe. Statistical mechanics was deulloped in the l ate $19^{\text {th }}$ century and an effort to understand how a large neember
of molecules behaved based on understanding of the states of single molecules and statistics. Both approaches yield similar reoults but the statistical mechanics approach is easier to follow.
The guiding principle is that the properties of members of molecules reflects the most probable distribution of the molecules subject to constraints like fixed temperature and pressure. The no st probable distribution is
the one which cam be achieved by the largest neember of independent ways.
Equal distribution of solute molecules more peale than concentrated in one region of solution

Start with a simple model system. Protein can have backhore that is either helical (wee) or strand $(\stackrel{\rightharpoonup}{\text { state } B})$. Start with assumption that the two states Cor a single molecule
are equal every so that are equal energy so that

$$
\mathbb{P}(A)=\mathbb{P}(B)=0.5 \quad \mathbb{P} \equiv \text { probalisity }
$$

Consider two molecules \Rightarrow four possibilities

Molecule 1 Molecule 2
$\left.\begin{array}{ll}A & A \\ A & B \\ B & A \\ B & B\end{array}\right\}$ all equal

We can only measure the total numbers of A and B srolecules

so there are three possible measceremeats (distributions)

Distribution	\mathbb{P}
$A_{2} B_{0}$	0.25
$A_{1} B_{1}$	$0.5 \Leftarrow$ more likely
$A_{0} B_{2}$	0.25 all have A ales
with some \mathbb{P}	

For three niolecules,use Pascal's Triangle

$$
\begin{aligned}
& \mathbb{P}\left(A_{3}\right)=0.125 \\
& \mathbb{P}\left(A_{2} B_{1}\right)=\mathbb{P}\left(A, B_{2}\right)=0.375 \\
& \mathbb{P}\left(B_{3}\right)=0.125 \sum \mathbb{P}=1 \text { in dependent }
\end{aligned}
$$

$$
125 \text { ET P=1 }
$$

For N molecules, v N(1) bactocical non-

If $\mathbb{P}(A) \neq \mathbb{P}(B)$ (true if $E_{A} \neq E_{B}$),

$$
\mathbb{P}(A)=P \mathbb{P}(B)=1-p \Leftrightarrow \mathbb{P}(A)+\mathbb{P}(B)=1
$$

$$
\mathbb{P}\left(A_{n} B_{N-n}\right)=p^{n}(1-p)^{N-n} \frac{N!}{n!(\alpha-n)!} \in \text { distribution }
$$

For $\mathbb{P}(A)=0.9 \quad \mathbb{P}(B)=0.1 \quad N=3$

$$
\mathbb{P}\left(A_{3}\right)=0.729
$$

$$
\left(\approx \frac{1}{4}\right)
$$

$\mathbb{P}\left(A_{2} B_{1}\right)=0.243 \Leftarrow$ still significant, probability $\mathbb{P}\left(A, B_{2}\right)=0.027$ of having I strand $1 P\left(B_{3}\right)=0,001$ out of 30 molecules

For the $P(A)=\mathbb{P}(B)=0.5$ care, as $N \uparrow$, The probability distribution becomes more peaked at $n_{A} \approx n_{B}$
for $N=10$

$$
\begin{aligned}
& \mathbb{P}\left(A_{5} B_{5}\right)=0.246 \\
& \mathbb{P}\left(A_{3} B_{7}\right)=\mathbb{P}\left(A_{,} B_{3}\right)=0.118 \\
& \mathbb{P}\left(A_{1} B_{9}\right)=\mathbb{P}\left(A_{9} B_{1}\right)=0.001
\end{aligned}
$$

For larger N, an approximate analytical Gormfor $\mathbb{P}\left(A_{n} B_{N-n}\right)$

$$
\ln \left\{\mathbb{P}\left(A_{n} B_{N-n}\right)\right\}=-N \ln 2+\ln (N!)-\ln (n!)-\ln (\{(N-n)
$$ $\{(N-n)\}$

Define $n=N / 2+5=\frac{N+2 s}{2}$

$$
\begin{aligned}
& N-n=\frac{N}{2}-s=\frac{N-2 s}{2} \text { "laces number of molecules } \\
& \text { instate } \\
& A
\end{aligned}
$$

Stirling's Approximation for large N

$$
\ln (N!) \approx \frac{\ln (2 \pi)}{2}+(N+1 / 2) \ln (N)-N
$$

Taylor Series to approximate any function $f(z)$ near $z=a$

$$
f(z) \approx f(a)+\left(\frac{\delta f}{\partial z}\right)_{z=a}(z-a)+\frac{1}{2}\left(\frac{\partial^{2} f}{\partial z^{2}}\right)(z=a)^{2}+\ldots
$$

Approximate $f(z)=\ln (z)$ with $a=1$

$$
\ln (1+x) \approx 0+x+\frac{x^{2}}{2}+\ldots
$$

largest term for small x

$$
\ln \left\{\mathbb{P}\left(A_{n} B_{N-n}\right)\right\} \approx \ln \{\mathbb{P}(s)\} \approx \frac{\ln \left(\frac{2}{\pi N}\right)}{2}-\frac{2 s^{2}}{N}
$$

$$
\mathbb{P}(s)=\sqrt{\frac{2}{\pi N}} e^{-2 s^{2} / N} \Leftarrow \text { Gaussian clistribution }
$$

$$
\sigma=\frac{\sqrt{N}}{2} \Leftarrow \text { standard deviation }
$$

$$
\begin{aligned}
& \mathbb{P}(s)=\sqrt{\frac{1}{2 \pi \sigma^{2}}} e^{-s^{2} / 2 \sigma^{2}} \\
& \text { average } \\
& \text { value }\{s\rangle=\int_{-\infty}^{+\infty} s \mathbb{P}(s) d s=0
\end{aligned}
$$

 distribution

Gaussian distribution

$$
\begin{gathered}
N=100 \\
\sigma=5
\end{gathered}
$$

Figure 1.9 The Gaussian approximation to linear scale. On this scale it is not possible to distinguish on the drawing the approximation plotted. The entire range of s is from -50 to +50 . The dashed lines are drawn from the All probable distributions have $|s| \leq 15^{\circ}$

$$
\begin{aligned}
& \mathbb{P}(0)=0.4 \Leftrightarrow \quad n_{A}=n_{B}=N / 2 \\
& I P(0)=\frac{0.4}{\sigma} \Leftarrow \text { most probable distribution } \\
& \mathbb{P}\left(\frac{N}{2}\right)=\left(\frac{0.4}{5}\right)\left(e^{-N / 2}\right) E \begin{array}{l}
\text { least probable } \\
\text { distribution }
\end{array} \\
& \begin{aligned}
\frac{\mid P(N / 2)}{P(0)}=e^{-N / 2} & n_{A}=N_{J} n_{B}=0 \\
& \approx 10^{-10^{16}} \approx 10^{17}(0.15 \mu \text { mole })
\end{aligned} \\
& \approx 10^{-10^{16}} \approx 0
\end{aligned}
$$

Most probable distributions cere for $|s| \leq \sigma$

$$
\frac{\mathbb{P}(\sigma)}{\mathbb{P}(0)}=0.6
$$

For $N=10^{17} \sigma=1.6 \times 10^{8}<10^{17}$

$$
\frac{\sigma}{N / 2}=\frac{1}{\sqrt{N}} \Leftarrow \omega 3 \times 10^{8} \text { for } N=10^{17}
$$

For large N, the most probable distributions cere a very small subset of the passible distributions

It's also useful to think about the numbers of ways that a , en distributions can be achieved $\alpha \mathbb{P}$

$$
N=10^{17} \text { ad helical Istrand/aelothers halb-helic } \begin{aligned}
& \text { koical } \\
& \text { haeforto }
\end{aligned}
$$

S
ω
The most common function with
W is

$$
\begin{aligned}
& \pi S=k \ln W \\
& \text { entropy Boltzmann's constant }=1.381 \times 10^{-23} \frac{\mathrm{~J}}{\mathrm{k}} \\
& \frac{\text { experimentally }}{\text { determined (nat }}=\frac{R \in \text { ideas }}{N_{A \in} \text { answer }} \\
& \text { determined (nat }
\end{aligned}
$$

For the helix|straud 2 -state protein system

$$
W\left(A_{n} B_{N-n}\right)=\frac{N!}{n!(N-n)!}
$$

This equation is useful for deriving a formula for S based on P_{A} annul P_{B}

$$
\begin{aligned}
& P_{A}=\frac{n}{N} \quad P_{B}=\frac{N-n}{N} \\
& W=\frac{N!}{\left(N \times P_{A}\right)!\left(N \times P_{B}\right)!}
\end{aligned}
$$

Stirling's approximation for large N

$$
\begin{aligned}
& \ln (N!) \approx N \ln N-N \\
& \ln \omega \approx N \ln N-\left(N \times P_{A}\right) \ln \left(N \times P_{A}\right)-\left(N \times P_{B}\right) \\
& \approx N\left(-p_{A} \ln p_{A}-\rho_{B} \ln p_{B}\right) \\
& \ln \left(N \times P_{B}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { individual } \\
& \text { molecules } \\
& t \text { total } \\
& \text { states }
\end{aligned}
$$

Consider a multiplicity model for how a protein might action its final folded streecture
Each residue in the final folded structure has a single "Correct" structure
Proteins Ayuthesiyed in an organism or purified from a synthesis often don't have the folded structure Ore simple model of folding is that the protein samples in time conformations untie every residece has the correct conformation. What is the overall W of a protein?

Worst case scenario
Two conformations per residue

$$
p_{A}=p_{B}=0.5
$$

100 reicdul protein
$w \approx$
Takes $\approx 10^{-12}$ s to sample a pecten structure
Maximum tine to sample all structures

How might model be adjusted to estimate a more reasonable time for protein folding?

