Chemistry 485 Spring, 2010 Distributed: Wed., 7 Apr. 2010 (10 points) Problem Set #8 Due: Mon., 12 Apr. 2010 - 1. Boron is used in nuclear reactor control rods and also in neutron detectors because 10 B has an extremely large cross section for the (n,α) reaction and does not make radioactive products. For example, the control "rods" are often plates of the ceramic B_4C with a density of 2.5 g/cm^3 . - (a) Write a balanced nuclear reaction for this reaction. - (b) What is the fraction of 10 B is converted to product in a 5.0 mm thick control rod that is exposed to a reactor flux of $2x10^{12}$ neutrons/cm²/s for 1.00 hour, if the total cross section for this reaction is 5580 b? - 2. 32 P is a beta-minus emitting nuclide that is used extensively in biological and biochemical studies. This nuclide is made in nuclear reactors by the (n,α) reaction with a cross section of 80 mb (on the appropriate target nucleus). The target material for the production is usually ammonium chloride (NH₄Cl) because it is a simple ionic solid. Calculate the activity of a 5.00 g sample of natural NH₄Cl that is uniformly irradiated for 30 minutes in a high-flux reactor with a flux of 1×10^{14} neutrons/cm²/s. - 3. Calculate the Q-value for the net solar burning reaction (show your work): $$4(^{1}p^{+}) \rightarrow ^{4}He^{2+} + 2e^{+} + 2\nu + Q$$ 4. Calculate the Q-value for the net helium burning reaction (show your work): $$3(^{4}\text{He}^{2+}) \rightarrow^{12} \text{C}^{6+} + \text{Q}'$$