1. Calculate the ratio of the wavelength of the 1.332 MeV photon to the diameter of the emitting 60Ni nucleus formed by the beta decay of 60Co.

2. The 134Cs nucleus decays 70% of the time by a β^- decay (4^+, $T_{1/2}=2.06$ yr) to an excited state (4^+) in the daughter nucleus 134Ba at 1.4006 MeV. This state can decay to three lower lying states by gamma ray emission: (1) to a 2^+ state at 1.168 MeV, (2) to a different 2^+ state at 0.6047 MeV, or (3) to the 0+ ground state at 0.0 MeV.

(a) What is the lowest multipolarity and character of the photon that would be emitted in a transition from the 4^+ excited state to each of the three possible lower energy states?

(b) Calculate the three rate constants for photon emission (λ in s$^{-1}$) from the 4^+ excited state to each of the three possible lower energy states using the Weisskopf estimates.