1. Short Answers (10 points each). The questions in this practice exam may require information on masses or mass defects for various nuclides.

(a) What is the activity of a 1.0 microgram sample of pure 14C?

(b) Use the Z_A function to determine the expected nuclear decay for 66As.

(c) What is the activity in curies of a sample of 11C ($T_{1/2}=20.4$ min) that is created during a 30 minute bombardment at a production rate of 2×10^6/s?

(d) Recall that two of the terms in the semi-empirical mass formula contain the atomic number. Write down these two terms and concisely describe why this term is needed in the mass formula.

(e) The isotope 81Kr ($T_{1/2}=229$ ky) is produced in the atmosphere in a way similar to 14C and is also used to determine the age of water supplies that are deep underground. The measured 81Kr/Kr isotope ratio in one sample was found to be 1.54×10^{-13} while the equilibrium atmospheric 81Kr/Kr ratio is 5.20×10^{-13}. Make an estimate of how long this sample has been out of equilibrium with the atmosphere.

(f) Use the single particle shell model diagram (attached below) to predict the ground state nuclear spin and parity of 63Cu. Be sure to indicate the configurations of the particles needed to make this prediction.

(g) What are mirror nuclei, give an example of mirror nuclei. What feature of the nuclear force is exhibited by mirror nuclei?

(h) The nuclear spin and parity of the ground state of the 7Li is $3/2^-$ while the spin and parity of the lowest lying excited state is $1/2^-$ at an energy of 0.478 MeV. (1) What is the expected multipolarity and character of the photon that would lead from this excited state to the ground state? (2) Use the single-particle estimates to calculate the decay constant for this excited state.

2. (20 points) The 64Cu isotope is one of the unusual nuclides that can undergo beta decay in two directions. (1) Write balanced nuclear equations for both decay modes. (2) Calculate the Q-value for the decay to the nuclide with a lower atomic number. (3) State why or why-not the 64Cu isotope can decay by positron emission.
Table 1: Table of single particle decay rates for nuclear transitions.

<table>
<thead>
<tr>
<th>Angular Momentum</th>
<th>Electric $\Delta \pi$</th>
<th>Electric $\lambda_{SP}(s^{-1})$</th>
<th>Magnetic $\Delta \pi$</th>
<th>Magnetic $\lambda_{SP}(s^{-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>yes</td>
<td>$1.03\times 10^{14} A^{2/3} E^3 \gamma$</td>
<td>no</td>
<td>$3.15\times 10^{13} E^3 \gamma$</td>
</tr>
<tr>
<td>2</td>
<td>no</td>
<td>$7.28\times 10^{7} A^{4/3} E^5 \gamma$</td>
<td>yes</td>
<td>$2.24\times 10^{7} A^{2/3} E^5 \gamma$</td>
</tr>
<tr>
<td>3</td>
<td>yes</td>
<td>$3.39\times 10^{1} A^2 E^7 \gamma$</td>
<td>no</td>
<td>$1.04\times 10^{1} A^{4/3} E^7 \gamma$</td>
</tr>
<tr>
<td>4</td>
<td>no</td>
<td>$1.07\times 10^{-5} A^{8/3} E^9 \gamma$</td>
<td>yes</td>
<td>$3.27\times 10^{-6} A^2 E^9 \gamma$</td>
</tr>
</tbody>
</table>
Potentially Useful Constants 24 Feb 10

\[h = 6.626 \times 10^{-34} \text{ J sec} \]
\[c = 2.99792 \times 10^{8} \text{ m sec}^{-1} \]

\[N_A = 6.0221 \times 10^{23} \text{ mole}^{-1} \]

hydrogen mass = 1.67263 \times 10^{-27} \text{ kg} = 938.7906 \text{ MeV} \]

1 MeV/c²u = 931.50

neutron mass = 1.67493 \times 10^{-27} \text{ kg} = 939.5731 \text{ MeV} \]

1. u = 1.6605 \times 10^{-27} \text{ kg} \]

electron mass = 9.1094 \times 10^{-31} \text{ kg} = 0.511 \text{ MeV} \]

\[e^2/4\pi\varepsilon_0 = 1.439 \text{ MeV-fm} \]

electron charge = 1.60218 \times 10^{-19} \text{ Coul} \]

\[\varepsilon_0 = 8.8542 \times 10^{-12} \text{Coulomb}^2 \text{ J}^{-1} \text{ m}^{-1} \]

1 eV = 1.602x10^{-19} \text{ J} \]

1 Ci = 3.7x10^{10} \text{ Bq}, 1 \text{ Bq} = 1/s \]

\[k_B = 1.380x10^{-23} \text{ J/K} \]

1 yr = 365.25 \text{ d} = 8766 \text{ hr} = 525,960 \text{ m} = 3.156x10^{7} \text{ s} \]

\[h \ c = 197.49 \text{ MeV-fm} \]

Potentially Useful Equations

\[r = 1.2 \text{ fm A}^{1/3} \]
\[V_{\text{sphere}} = 4\pi r^3/3 \]
\[A_{\text{sphere}} = 4\pi r^2 \]
\[A = \lambda N \]
\[\lambda = 1/\tau = ln2/T_{1/2} \]
\[\lambda = 0.693/T_{1/2} \]
\[F(x) = -\frac{d}{dx}V(x) \]
\[F_{\text{coulomb}} = -q_1q_2e^2/4\pi\varepsilon_0r^2 \]
\[V_{\text{coulomb}} = q_1q_2e^2/4\pi\varepsilon_0r \]
\[E = mc^2 \]
\[E_{\text{total}}^2 = (m_0c^2)^2 + (pc)^2 \]
\[E_{\text{total}} = \gamma m_0c^2 \]
\[\lambda_{\text{deB}} = h/p = h/mv \]
\[p = m v \]
\[T_{\text{nonRel}} = \frac{1}{2} m v^2 = p^2/2m \]
\[E_{\text{photon}} = h \nu \]
\[\lambda \nu = c \]
\[E_{\text{photon}} = pc \]
\[\text{BE}(Z, A) = [Z\times M(^1\text{H}) + N\times M(^1\text{n}) - M(Z, A)]c^2 \]
\[\Delta(Z, A) = M(Z, A) - A \]
\[\text{BE}(Z, A) = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(A-2Z)^2}{A} \pm \delta \]
\[Z_A \approx \frac{A}{2} \frac{81}{80+0.6A^{1/3}} \]
\[\frac{dN_1}{dt} = -\lambda_1 N_1 \]
\[N_1(t) = N_1^0 e^{-\lambda_1 t} \]
\[A_1(t) = A_1^0 e^{-\lambda_1 t} \]
\[\frac{dN_2}{dt} = \lambda_1 N_1 - \lambda_2 N_2 \]
\[N_2(t) = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1^0 \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right) + N_2^0 e^{-\lambda_2 t} \]
\[A_2 = R \left(1 - e^{-\lambda_2 t} \right) \]
\[R = \rho_A \sigma \phi \]
\[\rho_A = \rho_0 x \]