Chemistry 485

Spring, 2010 Distributed: Wed., 24 Feb. 2010 (100 points total) Practice Exam #1 Due: Mon., 1 Mar. 2010

- 1. Short Answers (10 points each). The questions in this practice exam may require information on masses or mass defects for various nuclides.
 - (a) What is the activity of a 1.0 microgram sample of pure ${}^{14}C?$
 - (b) Use the Z_A function to determine the expected nuclear decay for ⁶⁶As.
 - (c) What is the activity in curies of a sample of ¹¹C ($T_{1/2}=20.4$ min) that is created during a 30 minute bombardment at a production rate of $2\times10^{6}/s$?
 - (d) Recall that two of the terms in the semi-empirical mass formula contain the atomic number. Write down these two terms and concisely describe why this term is needed in the mass formula.
 - (e) The isotope ⁸¹Kr ($T_{1/2}$ =229 ky) is produced in the atmosphere in a way similar to ¹⁴C and is also used to determine the age of water supplies that are deep underground. The measured ⁸¹Kr/Kr isotope ratio in one sample was found to be 1.54×10^{-13} while the the equilibrium atmospheric ⁸¹Kr/Kr ratio is 5.20×10^{-13} . Make an estimate of how long this sample has been out of equilibrium with the atmosphere.
 - (f) Use the single particle shell model diagram (attached below) to predict the ground state nuclear spin and parity of ⁶³Cu. Be sure to indicate the configurations of the particles needed to make this prediction.
 - (g) What are mirror nuclei, give a example of mirror nuclei. What feature of the nuclear force is exhibited by mirror nuclei?
 - (h) The nuclear spin and parity of the ground state of the ⁷Li is 3/2- while the spin and parity of the lowest lying excited state is 1/2- at an energy of 0.478 MeV. (1) What is the expected multipolarity and character of the photon that would lead from this excited state to the ground state? (2) Use the single-particle estimates to calculate the decay constant for this excited state.
- (20 points) The ⁶⁴Cu isotope is one of the unusual nuclides that can undergo beta decay in two directions. (1) Write balanced nuclear equations for both decay modes. (2) Calculate the Q-value for the decay to the nuclide with a lower atomic number. (3) State why or why-not the ⁶⁴Cu isotope can decay by positron emission.

Table 1: Table of single particle decay rates for nuclear transitions.

Angular		Electric		Magnetic
Momentum	$\Delta \pi$	$\lambda_{SP}(\mathrm{s}^{-1})$	$\Delta \pi$	$\lambda_{SP}(\mathrm{s}^{-1})$
1	yes	$1.03 \mathrm{x} 10^{14} A^{2/3} E_{\gamma}^3$	no	$3.15 \mathrm{x} 10^{13} E_{\gamma}^3$
2	no	$7.28 \mathrm{x} 10^7 A^{4/3} E_{\gamma}^5$	yes	$2.24 \mathrm{x} 10^7 A^{2/3} E_{\gamma}^5$
3	yes	$3.39\mathrm{x}10^{1}A^{2}E\gamma^{7}$	no	$1.04 {\rm x} 10^1 A^{4/3} E_{\gamma}^7$
4	no	$1.07 \mathrm{x} 10^{-5} A^{8/3} E_{\gamma}^9$	yes	$3.27 \mathrm{x} 10^{-6} A^2 E_{\gamma}^9$

Potentially Useful Constants 24 Feb 10

$h = 6.626 x 10^{-34} J sec$	($c = 2.99792 \text{ x } 10^8 \text{ m sec}^{-1}$
$N_A = 6.0221 \text{ x } 10^{23} \text{ mole}^{-1}$	hydrogen mass = 1.67263 x	10^{-27} kg = 938.7906 MeV
$1 \text{ MeV/c}^2 u = 931.50$	neutron mass = 1.67493 x	$10^{-27} \text{ kg} = 939.5731 \text{ MeV}$
1. u = 1.6605 x 10 ⁻²⁷ kg	electron mass $= 9.1094$	$4 \ge 10^{-31} \text{ kg} = 0.511 \text{ MeV}$
$e^2/4\pi\epsilon_0 = 1.439$ MeV-fm	electron charg	ge = $1.60218 \ge 10^{-19}$ Coul
$\epsilon_0 = 8.8542 \text{ x } 10^{-12} \text{Coulomb}^2$	$^{2} \rm J^{-1} \rm m^{-1}$	$1 \text{ eV} = 1.602 \text{x} 10^{-19} \text{J}$
1 Ci = 3.7×10^{10} Bq, 1 Bq =	1/s	$k_B = 1.380 x 10^{-23} J/K$
1 yr = 365.25 d = 8766 hr =	$525,960 \text{ m} = 3.156 \text{x} 10^7 \text{ s}$	\hbar c = 197.49 MeV-fm

Potentially Useful Equations

 $V_{\rm sphere} = 4\pi \ r^3/3$ $A_{\rm sphere} = 4\pi r^2$ $r=1.2~{\rm fm}~{\rm A}^{1/3}$ $\lambda = 1/\tau = \ln 2/T_{1/2}$ $A = \lambda N$ $\lambda = 0.693/T_{1/2}$ $F(x) = -\frac{d}{dx}V(x)$ $\rho(R) = \rho_0 / (1 + e^{(r-R)/a})$ $F_{\rm coulomb} = -q_1 q_2 e^2 / 4\pi \epsilon_0 r^2 ~~ V_{\rm coulomb} = q_1 q_2 e^2 / 4\pi \epsilon_0 r$ $V_{\rm coulomb} = Z_1 Z_2 1.439 MeV fm/r$ $E_{total}^2 = (m_0 c^2)^2 + (pc)^2$ $E_{total} = \gamma m_0 c^2$ $E = mc^2$ $T_{nonRel}~=~\frac{1}{2}~m~v^2~=~p^2/2m$ $\lambda_{\rm deB}=h/p=h/mv$ p = m v $E_{photon} = p c$ $E_{photon} = h \ \nu$ $\lambda \nu = c$ $BE(Z, A) = [Z * M(^{1}H) + N * M(^{1}n) - M(Z, A)]c^{2}$ $\Delta(\mathbf{Z}, \mathbf{A}) = \mathbf{M}(\mathbf{Z}, \mathbf{A}) - \mathbf{A}$ $BE(Z, A) = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(A - 2Z)^2}{A} \pm \delta \qquad \qquad Z_A \approx \frac{A}{2} \frac{81}{80 + 0.6A^{2/3}}$ $\frac{\mathrm{dN}_1}{\mathrm{dt}} = -\lambda_1 N_1$ $N_1(t) = N_1^0 e^{-\lambda_1 t}$ $A_1(t) = A_1^0 e^{-\lambda_1 t}$ $\frac{\mathrm{d}N_2}{\mathrm{d}t} = \lambda_1 N_1 - \lambda_2 N_2 \qquad \qquad N_2(t) = \frac{\lambda_1}{\lambda_2 - \lambda_1} N_1^0 \left(e^{-\lambda_1 t} - e^{-\lambda_2 t} \right) + N_2^0 e^{-\lambda_2 t}$ $A_2 = R \left(1 - e^{-\lambda_2 t} \right)$ $R = \rho_A \sigma \phi$ $\rho_{\rm A} = \rho_{\rm n} \mathbf{x}$