Sampling for Convolution with Prolates

Tatiana Levitinaa and Erkki J. Brändasb

aInstitut Computational Mathematics, TU Braunschweig, Braunschweig, Germany
bDepartment of Quantum Chemistry, Uppsala University, Uppsala, Sweden

During the last years the interest in Finite Fourier Transform (FFT) eigenfunctions, often referred to as 'prolates', has increased significantly among scientists both in the field of quantum chemistry as well as in the signal processing community. These prolates are band-limited and highly concentrated at a finite time-interval. Both features are acquired by the convolution of a band-limited function with a prolate. This will permit the interpolation of such a convolution using the Walter and Shen sampling formula1 essentially simplifying the computations2. The Fourier transform of the convolution may not necessarily be continuous and the concentration interval is twice as large as that of the prolate3. Rigorous error estimates are given as dependent on the truncation limit and the accuracy achieved is tested by numerical examples.